DTXG PID Temperature controller instruction manual

1. Features:

1.1.Input Sensor Types

Can be connected to the following sensors (universal input).

-TC: K, J, T, E

-RTD: Pt100, CU50

1.2.Control Outputs

The control output can be relay output, voltage output (for driving SSR), or current output, depending on the model number.

1.3.Adjusting PID Constants

Can be easily set the optimum PID constants by performing AT (auto-tuning) with the limited cycle method.

1.4.Standard Alarms

Alarm output (relay switch) turns On when the deviation, process value, set point, or manipulated value reaches a specific value.

1.5 Sampling Time: 1 sec

1.6 Working ambient conditions:

Allowable ambient temperature: -0 to +55 °C Allowable ambient humidity: 5 to 85 % RH.

2. Parts Description:

Terminal Arrangement

1 ALM1: Lamp lights when event occurs

2 AT lamp: Flashes during Auto-tuning (AT)

4 PV display: Displays measured value (PV) or various parameter symbols

6 Up key: Increases numerals

8Shift key: Shift digits when settings are changed

3 Output lamp: Lights when output is turned on
5 SV display: Displays setting value (SV), manipulated output value (MV) or various parameter setting values.
7 Down key: Decreases numerals
9 Set (SET) key: Parameter setting values

3. Parameters

ID	Code	Name	Manual	Setting range	Ex-Fact ory
1	SP	Set value	Set point temperature (SV) which is the target value for control	Determined by Input Sensor	100
2	RL- I	Alarm Set value	Refer to ALP for the suitable alarm mode	Determined by Input Sensor	300

			If the measured value (PV) is close to alarm	0x09	-
3	<u> </u>		set value, the relay contact may repeatedly		
		Alarm	turn ON and OFF (due to input fluctuation)		
	, , ,	Differential gap	The differential gap setting can prevent this		
					0.0
4	SE	PV Bias	The value of PV bias is added to the actual	±20.0	0.0
	<u> </u>		Input value to calibrate the input reading.	0.4 50.0	0.5
			when the controller is on ON/OFF controlling	0.1~50.0	0.5
	нч		close to set point temporature (SV) relay		
5		Differential gap	contact may repeatedly turn ON and OFF The		
		(Hysteresis)	differential gap (hysteresis) setting can prevent		
			this ON/OFF repetition by giving a range to the		
			set point temperature (SV).		
			This parameter is set when controller is on PI		
		Dranartianal	or PID controlling mode (for heating/cooling	1~100.0	30
6	ρ	Proportional	PID action).		
		Danu	When P=0 the controller is on ON/OFF		
			controlling mode.		
7	1	Calculus time	Eliminates offset occurring in proportional	0~9999	240
·	-		control.		
8	в	Differential time	Prevents overshoot and/or undershoot caused	0∼250S	60S
0			by integral action effect.	0 100	400
9	C	Control time	Proportional cycle time	2~120	105
		Auto tuning	ON: Auto tuning (AT) with learning start	ON/OFF	OFF
10	RE		UFF: Auto luning (AT) with learning stop		
			learning function is completed		
	-		Orreverse control/beating)	0~1	0
11	Eool	Hot/Cold	1:positive control(realing)		0
	<u> </u>			0~10	1
		Alarm type	1: Process high alarm:	0 10	•
			2 [°] Process low alarm		
12	RLP		3: Deviation High alarm :		
			4: Deviation low alarm:		
			5: Deviation high/low alarm;		
			6: Band alarm.		
			This is a 1st-order lay filter by software	0~99	20
13	PF	Digital Filter	prepared in order to reduce fluctuations of the		
			measured value (PV) by noise.		
14	dP	Decimal point	Position of the decimal point, for the displayed	0~3	1
		position	measured value (PV).		
15	Loce	Set data lock	LOCK=18, all parameters can be set.	0~50	18
	<u> </u>	lottical accelerate	Otherwise, No parameter can be changed.	0.400	10
16			After auto tuning, increase the value of this	0-100	10
10	00		than the set value (SV) for a long time		
		Measured value	C: Celsius E: Eabrenbeit	C F	F
17	E F	(PV) unit select	If the value is changed, the controller peeds to	0,1	1
			In the value is changed, the controller needs to		
			10 Auto-tuning of this table		
			10.740 - 10100 or this table.	KIET	ĸ
			B+100 (PEZ) 100 0, 600 0°C	сц50	IX
18	50	Input type	$(100)(12) = 133.3^{\circ} = 000.0^{\circ} 0,$	Pt100	
			$(L) U \sim 1300^{\circ}C; E(L) U \sim 700.0^{\circ}C;$		
			J (<i>Ĵ</i>)0∼900.0°C; T(Ĺ) 0∼400.0°C;		

4.1 Basic Setting Level:

Press and hold the SET key for 3S to enter main Parameters setting mode (the controller will display the parameters code $(1 \sim 25)$ in the upper window and the parameters value at the lower one). Press \blacktriangle , \blacksquare or \blacktriangleleft key to adjust each parameter and then by pressing the SET key each parameter will be saved. The parameters can be saved automatically and controller goes out of parameter setting mode within 10 seconds if no action is taken or no key is pressed.

All the Parameter can be set or revised when Lock=18

4.2 Setting value (SV):

Press the SET key once to enter SV Setting Mode. The Set value (SV) can be set when the operation mode is on Auto-tuning.

4.3 Manual Control Operation:

Press and hold ◀ key for 3S to enter the manual regulation. When it displays "H" on the lower window you can set the output power. Press and hold ◀ key for 3S again to get out of manual regulation mode.

4.4 Output percentage:

Press A key to enter output percentage.

5. Determining PID Constants (Auto-tuning)

When AT is executed, the optimum PID constants for the set point at that time are set automatically. A method (called the limit cycle method) for forcibly changing the manipulated variable and finding the

characteristics of the control object is employed. Set HY on $0.5 \sim 1^{\circ}$ C. If the output is relay, set t=2S and then set AT=On. AT lamp will be flashing and at this time controller enters **Auto-tuning** mode. Now, the controlling way is on-off mode and after 3 times vibrating (3 control period) P, I, D parameters will be automatically saved and the self-adjusting process is completed (Operation will be as shown in the diagram):

Attentions:

- When Auto-tuning, the controller should not change the set value.

- When the power turns Off during Auto-tuning, it will restart Auto-tuning next time.

-When it is needed to artificially exit during **Auto-tuning**, set parameter (AT) to <u>OFF</u> so can exit (but the setting result will not be valid).

6. Alarm function

Alarm (ALM) function sets up the alarm status when the measured value (PV) or the deviation reaches the alarm set values. In the alarm status, the alarm output is dry contact type (terminals 1 and 2), and the alarm is used to drive the equipment danger signals or the safety equipment.

Alarm (ALM) function	Alarm status[ON]	Alarm status[OFF]			
Process high alarm	Measured value>Alarm set value	Measured value <alarm set="" td="" value<=""></alarm>			
Process low alarm	Measured value <alarm set="" td="" value<=""><td colspan="4">Measured value>Alarm set value</td></alarm>	Measured value>Alarm set value			
Deviation high alarm	Measured value>Alarm set value + Set value	Measured value>Alarm set value + Set value			
Deviation low alarm	Measured value <alarm -="" set="" td="" value="" value<=""><td colspan="3">Measured value>Alarm set value - Set value</td></alarm>	Measured value>Alarm set value - Set value			
	Measured value <alarm1 set="" td="" value<=""><td colspan="4">Measured value>Alarm1 set value</td></alarm1>	Measured value>Alarm1 set value			
Band alarm	And	Or			
	Measured value>Alarm2 set value	Measured value <alarm2 set="" td="" value<=""></alarm2>			
	Measured value>Alarm1 set value	Measured value <alarm1 set="" td="" value<=""></alarm1>			
Out of band alarm	Or	And			
	Measured value <alarm2 set="" td="" value<=""><td colspan="3">Measured value>Alarm2 set value</td></alarm2>	Measured value>Alarm2 set value			

Character Symbols	This manual indicates	9-segment display	characters as shown below.
-------------------	-----------------------	-------------------	----------------------------

Α	В	С	D	E	F	G	Н	I	J	κ	L	М
8	Ь	Ε	б	Ε	F	6	Н	1	J	Ľ	L	ñ
N	0	Ρ	Q	R	S	Т	U	Y				
n	0	ρ	9	r	5	Ł	U	Ч				

Wiring diagram for SSR output:

